South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, Proceedings (2021), pp. 81-90

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

DISCRETE LAPLACE TRANSFORMS OF SINE FUNCTION BY NABLA OPERATOR

Shiny N. S. and Dominic Babu G.

P. G. and Research Department of Mathematics, Annai Velankanni College, Tholayavattam, Kanyakumari - 629157, Tamil Nadu, INDIA

E-mail : shinydaniha@gmail.com, dominicbabu202@gmail.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue

Proceedings of International Virtual Conference on "Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"

Abstract: In this paper, we define difference operator providing some results also we derived Laplace transform of sine series. A definition for the Laplace transform corresponding to the nabla difference operator is given.

Keywords and Phrases: Generalized Laplace Transform, Inverse Difference Operator, Nabla Operator and Sine Series.

2020 Mathematics Subject Classification: 39A13, 39A60, 39A70.

1. Introduction

Many applications are obtained using difference equation and its corresponding difference operator ∇ . The Laplace transform can also be used to solve differential equation and is used extensively in electrical engineering. The theory of difference equation is developed the difference operator $\nabla_{\ell} u(k) = u(k) - u(k-l), k \in N$, where N is the set of natural numbers. The Laplace Transform of f(t) is defined by $L(f(t)) = \int_{0}^{\infty} e^{-st} f(t) dt$ provided the integral exists, s is a parameter.

Definition 1.1. If n and ℓ are any two positive integers then the generalized positive polynomial factorial is $k_{\ell}^{(n)} = k(k-\ell)(k-2\ell)...(k-(n-1)\ell), k_{\ell}^{(0)} = 1$ and